

INCERTITUDES DE MESURE

LIMITES DE QUANTIFICATION

2024

SOMMAIRE

Notes d'information :	3
Analyses œnologiques de base de vins, boissons spiritueuses, boissons a base de vin	
Analyses de Chimie Fine	8
Constituants des moûts et des vins.	8
Acides	9
Alcools et alcools supérieurs	10
Arômes du vin	10
Arômes du bois	11
Autres constituants ou additifs	12
Résidus phytosanitaires par GC-Ms ⁿ	13
Résidus phytosanitaires par LC-MS ⁿ	15
Menu Fosetyl / Glyphosate par LC-Ms ⁿ	17
Défauts et contaminants des vins et des moûts	17
Contaminants issus des plastiques et solvants organiques	19
Analyse du bois	19
Analyses agronomiques	20
Analyses microbiologiques	21

NOTES D'INFORMATION:

Qu'est-ce que l'incertitude de mesure ?

- L'incertitude est le « paramètre associé au résultat d'un mesurage, qui caractérise la dispersion des valeurs qui pourraient être raisonnablement attribuées au mesurande ».
- L'incertitude en valeur absolue comme en valeur relative dépend de la concentration, en particulier pour les valeurs basses.

A la limite de quantification, l'incertitude est \geq 60 %.

Aide à la lecture du document

Il existe 3 types de modélisation des incertitudes de mesure :

- Incertitude fixe en valeur relative sur la gamme de mesure : la valeur de l'incertitude est exprimée en %
- Incertitude fixe en concentration sur la gamme de mesure : la valeur absolue de l'incertitude est communiquée
- Incertitude dynamique sur la gamme de mesure, sa valeur évolue sur la gamme de mesure selon un modèle mathématique : la valeur absolue de l'incertitude sera communiquée pour des niveaux de résultats clés (valeurs limites réglementaires, valeurs de seuil technique...)

Signification de « Max » : l'incertitude reportée sur le certificat d'analyse sera inférieure ou égale à l'incertitude maximale (« Max ») annoncée dans ce catalogue. Veuillez vous rapprocher des laboratoires si vous souhaitez des informations complémentaires.

Précision sur les composantes de l'incertitude de mesure :

Le laboratoire ne procède pas à l'échantillonnage, les échantillons sont remis par le demandeur.

La contribution issue de l'échantillonnage n'est pas prise en compte dans le calcul des incertitudes de mesure du laboratoire.

Ce catalogue est un récapitulatif des incertitudes de mesure et limites de quantification des paramètres analytiques mesurés dans le laboratoire.

Conventionnellement la limite de détection = 1/3 de la limite de quantification.

Pour les analyses sur matériaux, l'incertitude de mesure dépend de la préparation de l'échantillon, veuillez vous rapprocher du laboratoire pour plus d'information.

Analyses œnologiques de base de vins, boissons spiritueuses, boissons a

BASE DE VIN... Pour des precisions sur les gammes de mesure, veuillez contacter le laboratoire.

Masse volumique

Méthode	Limite de quantification	Incertitude
IRTF (uniquement vin)		0,0009 g/cm ³
Densimétrie électronique	0,0012 g/cm ³	0,0003 g/cm ³

Titre alcoométrique volumique

Méthode	Limite de quantification	Incertitude
IRTF (uniquement vin)		0,13 %vol.
Entrainement à la vapeur + densimétrie électronique	0,1%vol.	0,12 %vol.
Distillation + densimétrie électronique	0,1%vol.	0,2 %vol.

Titre alcoométrique volumique total

Méthode	Limite de quantification	Incertitude
Calcul		0,2 %vol. (Vin de 0 à 20g/L de Glucose Fructose) 0.5 % Vol (Vin supérieur à 20 g/L de Glucose Fructose)

Glucose + fructose

Méthode	Limite de quantification	Incertitude	
IRTF	1 g/L	Vins <20g/L Rhône Vins <15g/L Montredon	$\begin{array}{c} 1 \text{ g/L } \pm 0.6 \\ 10 \text{ g/L } \pm 1.2 \end{array}$
	- 8 -	Vins édulcorés	$Max \pm 2,2$
		Vin doux	$Max \pm 6,0$
		Clairette	± 4,0
		Moût	± 10
Automatisée enzymatique Spectrométrique UV	0,1 g/L	1 g/L Max 10 g/L Max	

Acidité totale

Méthode	Limite de quantification	Incertitude
IRTF (vin et moût)		0.20
Titrimétrie au BBT		6 %
Potentiométrie		6 %

Acide acétique - Acidité volatile

Méthode	Limite de quantification		
A	0.06 - 11.00 /1	0,50 g H ₂ SO ₄ /L	± 0,05
Automatisée enzymatique Spectrométrique UV	0,06 g H ₂ SO ₄ /L	1,00 g H ₂ SO ₄ /L	± 0,07
Entraînement à la vapeur + Titrimétrie	0,05 g H ₂ SO ₄ /L	0,05 g H ₂ SO ₄ /L	
Calcul à partir des acidités totale et fixe (Boissons spiritueuses)	0,05 g H ₂ SO ₄ /L	5 %	ó

Dioxyde de soufre libre

Méthode	Limite de quantification		
Spectrométrie UV-Visible automatisée (colorimétrie)	5 mg/L	10 mg/L	Max ± 2,5
Spectrometrie UV-Visible automatisee (colorimetrie)		30 mg/L	Max ± 5,6
Entraînement à froid + oxydation + titrimétrie	2 mg/L	2 mg/L	± 1,3
Entramement a noid + oxydation + tidinietrie		30 mg/L	± 4,1

Dioxyde de soufre total

	Méthode	Limite de quantification	Incertitude	
	Spectrométrie UV-Visible automatisée (colorimétrie)	5 mg/L	10 mg/L	Max ± 3,0
Spectrometrie UV-Visible automatisee (colorimetrie)		100 mg/L	± 13,0	
	Entraînement à chaud + oxydation + titrimétrie	2 mg/L	10 mg/L	± 1,9
	Entrainement a chaud + oxydation + titrimetrie		100 mg/L	± 13,1

рΗ

Méthode	Limite de quantification	Incertitude
IRTF		Vin 0,1 / Moût 0.15
Potentiométrie		0,06

Acide malique

Métho	de	Limite de quantification	Incertitude
IRTE	:	0.3 g/L	0.3 g/L

Acide L-malique

Méthode	Limite de quantification	Incert	titude
Automatisée enzymatique Spectrométrique UV	0.06 g/L	0,3 g/L	± 0,06
		2 g/L	± 0,42

Acide lactique

Méthode	Limite de quantification	Incertitude
IRTF (uniquement vin)	0.3 g/L	0,3 g/L

Acide L-lactique

Méthode	Limite de quantification		rtitude
Automatisée enzymatique Spectrométrique UV	atique Spectrométrique UV 0.06 g/L	0,3 g/L	± 0,07
Automatisee enzymatique opeetrometrique o v	0.00 g/ L	2 g/L	$Max \pm 0,43$

Extrait sec total

Méthode	Limite de quantification	Incertitude
Calcul		2

Caractéristiques chromatiques

Caractéristique	Méthode	Limite de quantification	Incertitude
DO ₄₂₀	Spectrométrie Visible	0,1	0,1
DO ₅₂₀	Spectrométrie Visible	0,1	0,1
DO ₆₂₀	Spectrométrie Visible	0,1	0,1
Intensité colorante	Spectrométrie Visible	0,2	0,2
Intensité colorante	Méthode colorimétrique automatisée (uniquement vin)	3	10 % Min 0,2

Éléments minéraux

Caractéristique	Méthode	Limite de quantification	Incertitude	
Fer	Spectrométrie UV-Visible	0,2 mg/L	1,0 mg/L	Max ± 0,25
	automatisée (colorimétrie)		10,0 mg/L	Max ± 2,00
Cuivre	Spectrométrie UV-Visible	0,15 mg/L	0,2 mg/L	± 0,08
	automatisée (colorimétrie)		1 mg/L	± 0,15
Fer		0,6 mg/L	10 mg/L	± 1,76
Cuivre		0,05 mg/L	1,0 mg/L	± 0,19
Potassium		15 mg/L	1250 mg/L	± 217
Calcium		1 mg/L	50 mg/L	± 7,9
Magnesium	MP-AES	2,5 mg/L	150 mg/L	±24,7
Manganese		0,25 mg/L	2 mg/L	± 0,34
Sodium		0,5 mg/L	80 mg/L	± 13,6
Phosphore		10 mg/L	100 mg/L	± 19,7
Zinc		0,25 mg/L	5 mg/L	± 1,06
Bore		0,25 mg/L	14 mg/L	± 3,5

Ces éléments peuvent également être analysés par ICP-MS. Se rapprocher du laboratoire pour plus d'information.

Composés phénoliques

Caractéristique	Méthode	Limite de quantification	Incertitude
P.O.	Spectrométrie UV		10 %
DO ₂₈₀	IRTF (uniquement vin)	10	5

Co2

Méthode	Limite de quantification	Incertitude
IRTF	200 mg/L	150
Séquentiel	150 mg/L	25 %

Surpression

Méthode	Gamme de mesure	Incertitude
Aphrométrie	0-10 Bar	0,2

Cendres

Méthode	Limite de quantification	Incertitude
Incinération à 520°C	1 g/L	20 %

Chlorures

Méthode	Limite de	Incertitude

	quantification	
Potentiométrie	10 mg/L eq NaCl	10 %

Pour toute autre demande, veuillez consulter le laboratoire.

ANALYSES DE **C**HIMIE **F**INE

CONSTITUANTS DES MOUTS ET DES VINS

Sucres

Glucose

Méthode	Limite de quantification	Incer	titude
HPLC réfractométrie	0,2 g/L	2,5 g/L	Max ± 0,21
HPLC retractometrie		10 g/L	Max ±0.66

Fructose

Méthode	Limite de quantification	Incertitude	
LIDIC officers to the	0,2 g/L	2,5 g/L	$Max \pm 0,22$
HPLC-réfractométrie		10 g/L	$Max \pm 0.63$

Saccharose

	Méthode	Limite de quantification	Incertitude	
	LIDI C militar atom itaria	0,2 g/L	2,5 g/L	Max ± 0,21
HPLC- réfractométrie		10 g/L	Max ± 0.61	

Sucres totaux

Méthode	Limite de quantification	Incertitude
HPLC réfractométrie	1 g/L	10 %

Glycérol

Méthode	Limite de quantification		
HPLC-réfractométrie	0.2 g/L	5 g/L	Max ± 0,6

Degré BRIX

Méthode	Limite de quantification	Incertitude
Réfractométrie de ABBE	0.25°Brix	± 0,5 °Brix

ACIDES

Acides organiques

Caractéristique	Méthode	Limite de quantification		itude	
Acide lactique	Electrophorèse capillaire -Spectrométrie UV	0,1	0,3 g/L	± 0,07	
Acide malique	Electrophorèse capillaire -Spectrométrie UV	0,1	0,3 g/L	± 0,07	
Acide tartrique	Electrophorèse capillaire -Spectrométrie UV	0,2	1,5 g/L	± 0,23	
Acide succinique	Electrophorèse capillaire -Spectrométrie UV	0,1	1 g/L	± 0,14	
Acide citrique	Electrophorèse capillaire -Spectrométrie UV	0,1	0,5 g/L	± 0,11	
Acide gluconique	Electrophorèse capillaire -Spectrométrie UV	0,2	0,5 g/L	± 0,17	

Acide Ascorbique

Méthode	Limite de quantification	Incertitude	
HPLC	5 mg/L	50 mg/L	± 7,6

Acide benzoïque

Méthode	Limite de quantification	Incert	itude
HPLC	5/I	20 mg/L	± 3.7
	5 mg/L	200 mg/L	± 21.2

Acide Salicylique

Méthode	Limite de quantification	Incertitude	
HPLC	, /I	20 mg/L	± 3.6
	5 mg/L	200 mg/L	± 20.3

Acide Shikimique

Méthode	Limite de quantification	Incertitude
HPLC	15 mg/L	± 15%

Acide Sorbique

Méthode	Limite de quantification		
HPLC	5 mg/L	20 mg/L	Max ± 4.2
HPLC	3 mg/ L	200 mg/L	Max ± 28.8
Electrophorèse capillaire-UV	10 mg/L	200 mg/L	± 28,6

Sulfates

Méthode	Limite de quantification	Incertitude	
Electrophorèse capillaire-UV	0,10 g/L	0.2 g/L 1 g/L	Max ± 0,09 Max ± 0,16

Phosphates

Méthode	Limite de quantification	Incertitude
Electrophorèse capillaire-UV	0,3 g/L	± 14 %

ALCOOLS ET ALCOOLS SUPERIEURS

Ethanol

Méthode	Limite de quantification		titude
GCFID	0,01 % vol.	1%vol	± 0,08

Méthanol

Méthode	Limite de quantification		
GCFID	10 mg/L	50 mg/L	± 9,2
		200 mg/L	± 26,7
		250mg/L	± 33.0
		400mg/L	± 52.1

Méthionol et 2-méthylthio-éthanol

Méthode	Limite de quantification	Incertitude
GCMS SPME	1 mg/L	± 15%

Alcools supérieurs Menu: Propan-1-ol, 2 méthylpropan-1-ol, Isopentanols, Butan-1-ol, Butan-2-ol, But-2-ène-1-ol.

Méthode	Limite de quantification	Incert	
GC-FID (Boissons spiritueuses)	10 mg/L	200 mg/L	± 24

AROMES DU VIN

Acétaldéhyde

Méthode	Limite de quantification	Incer	titude
GCFID	10 mg/L	50 mg/L	± 9,7

Acétate d'isoamyle

Méthode	Limite de quantification		
GC-MS	0,2 mg/L	4 mg/L	± 0,54

Acétate d'éthyle

Méthode	Limite de quantification	Incerti	itude
GC-MS	5 mg/L	100 mg/L	+/-16
GCFID	10 mg/L	100 mg/L	+/-15

Menu Esters

Butyrate d'éthyle, acétate d'isoamyle, hexanoate d'éthyle, acétate d'hexyle, succinate de diéthyle, octanoate d'éthyle, acétate de 2-phényle éthyle, décanoate d'éthyle, Dodécanoate d'éthyle.

Méthode	Limite de quantification	Incertitude
GCMS	$20\mu g/L$	± 25%

IBMP & IPMP

Caractéristique	Méthode	Limite de quantification	Incertitude
IBMP IPMP	SPME GC-MS	5 ng/L 2 ng/L	± 20 %

Terpènes et Norisoprénoïdes

Caractéristique	Méthode	Limite de quantification	Incertitude
Géraniol Linalol Terpinéol Nérol Citronellol β- damascénone α et β- ionone	SPME GC-MS	5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 25 ng/L 10 ng/L	± 20%

AROMES DU BOIS

Caractéristique	Méthode	Limite de quantification	Incer	titude
Cis et Trans Whisky-Lactone Vanilline Gaïacol 4-MéthylGaïacol Eugénol Isoeugénol Furfural 5-MéthylFurfural O-Crésol	Extraction liquide liquide GC-MS	10µg/L 25 µg/L 1 µg/L 1 µg/L 1 µg/L 1 µg/L 1 µg/L 50 µg/L 5 µg/L 1,2 µg/L	100 µg/L 250 µg/L 50 µg/L 50 µg/L 50 µg/L 50 µg/L 3000 µg/L 250 µg/L	+/-18 ± 59 ± 8 ± 9 ± 9 ± 804 ± 49 ± 0,45
Syringaldéhyde Syringol Ethylvanilline Trans-nonénal 4-Méthylsyringol 4-allylsyringol Ethylvanillate Acetovanillone Acetosyringone Maltol	Extraction liquide- liquide GC-MS	50 µg/L 5 µg/L 5 µg/L 3 µg/L 1 µg/L 10 µg/L 5 µg/L 25 µg/L 5 µg/L 25 µg/L	3000 µg/L 100 µg/l 100 µg/l 50 µg/L 50 µg/L 50 µg/L 50 µg/L 100 µg/L 50 µg/L 250 µg/L	± 826 ± 27 ± 20 ± 11 ± 10 ± 14 ± 10 ± 28 ± 15 ± 94

AUTRES CONSTITUANTS OU ADDITIFS

Rebaudioside A

Méthode	Limite de quantification	Incertitude
SPE HPLC-UV	25 mg/L	± 20%

Resveratrol (trans)

Méthode	Limite de quantification	Incertitude
HPLC-UV	0,3 mg/L	± 20%

RESIDUS PHYTOSANITAIRES PAR GC-MSⁿ

Composé		mite de	Incertiti	ıdes	
**************************************		tification			
2-phénylphénol	5	μg/L	50 μg/L	±	14
2,4'-DDT	5	μg/L	50 μg/L	±	22
3,5-Dichloroaniline	5	μg/L	50 μg/L	±	14
4,4'-DDE	5	μg/L	50 μg/L	±	13
4,4-DDT	5	μg/L	50 μg/L	±	26
4,4'-TDE	5	μg/L	50 μg/L	±	24
Aclonifen	5	μg/L	50 μg/L	±	20
Acrinathrine	5	μg/L	50 μg/L	±	21
Amisulbrom	5	μg/L	50 μg/L	±	25
Azoxystrobin*	5	μg/L	50 μg/L	±	16
Benalaxyl*	1	μg/L	50 μg/L	±	14
Benoxacor	1	μg/L	50 μg/L	±	15
Beta-Cyfluthrine	5	μg/L	50 μg/L	±	16
Bifenthrin*	1	μg/L	50 μg/L	±	14
Bitertanol	5	μg/L	50 μg/L	±	15
Boscalid*	1	μg/L	50 μg/L	±	15
Bupirimate	1	$\mu g/L$	50 μg/L	±	14
Buprofezin	5	$\mu g/L$	50 μg/L	±	13
Captan	20	μg/L	50 μg/L	±	31
Carfentrazone-éthyl	1	μg/L	50 μg/L	±	20
Chlormephos	1	μg/L	50 μg/L	±	19
Chlorothalonil	5	μg/L	50 μg/L	±	22
Chlopyrifos-méthyl*	1	μg/L	50 μg/L	±	14
Chorpyrifos-éthyl*	1	μg/L	50 μg/L	±	14
Chlorpropham	1	$\mu g/L$	50 μg/L	±	14
Cyhalofop-butyl	5	μg/L	50 μg/L	±	15
Cyhalothrine	5	μg/L	50 μg/L	±	14
Cypermethrin	5	μg/L	50 μg/L	±	15
Cyproconazole*	1	μg/L	50 μg/L	±	14
Cyprodinil*	1	μg/L	50 μg/L	±	14
Deltamethrin	10	μg/L	50 μg/L	±	21
Dichlofluanid	5	μg/L	50 μg/L	±	20
Diclofop-méthyl	1	μg/L	50 μg/L	±	14
Difenoconazole	1	μg/L	50 μg/L	±	15
Diflufenican	1	μg/L	50 μg/L	±	19
Dimethomorphe*	5	μg/L	50 μg/L	±	16
Diuron metabolite	5	μg/L	50 μg/L	±	24
Esfenvalerate	1	μg/L	50 μg/L	±	15
Ethoprofos	1	μg/L	50 μg/L	±	13
Etofenprox	5	μg/L	50 μg/L	±	19
Famoxadone	5	μg/L	50 μg/L	±	17
Fenamidone*	1	μg/L	50 μg/L	±	14
Fenbuconazole*	1	μg/L	50 μg/L	±	16
Fenhexamid*	1	μg/L	50 μg/L	±	16
Fenitrothion*	1	μg/L	50 μg/L	±	15
Fenoxaprop-éthyl	1	μg/L	50 μg/L	±	14
Fenoxycarb*	5	μg/L	50 μg/L	±	16
Fenpropidine	5	μg/L	50 μg/L	±	20
Fenpropimorphe	1	μg/L	50 μg/L	±	14
Fipronil	1	μg/L	50 μg/L	±	16
Flazasulfuron	5	μg/L	50 μg/L	±	22
Fluazifop-p-butyle	1	μg/L	50 μg/L	±	14
Fluazinam	10	μg/L μg/L	50 μg/L	±	26
Fludioxonil*	1	μg/L	50 μg/L	±	16
Flufenoxuron	1	μg/L μg/L	50 μg/L	±	19
Flumioxazin*	5	μg/L μg/L	50 μg/L	±	16
Fluopyram	1	μg/L μg/L	50 μg/L	±	16
Flurochloridone	1	μg/L μg/L	50 μg/L	±	21
Turocinoridone	1	µg/ L	JO μg/ L		21

Flusilazole*	1	μg/L	50 μg/L	±	14
Flutriafol	1	μg/L μg/L	50 μg/L 50 μg/L	±	15
Fluxapyroxad	1	μg/L μg/L	50 μg/L 50 μg/L	±	14
Folpet	10	μg/L	50 μg/L	±	31
Haloxyfop-R-methyl	1	μg/L	50 μg/L	±	14
Hexaconazole	5	μg/L μg/L	50 μg/L 50 μg/L	±	14
Imazalil	5	μg/L	50 μg/L	±	15
Iprodione	5	μg/L μg/L	50 μg/L 50 μg/L	±	16
Iprovalicarbe*	5	μg/L μg/L	50 μg/L 50 μg/L	±	15
Kresoxim-methyl*	1		50 μg/L 50 μg/L	±	13
Lindane*	1	μg/L μg/L	50 μg/L 50 μg/L	±	13
Malathion	1		50 μg/L 50 μg/L	±	14
Metalaxyl-M*	5	μg/L	50 μg/L 50 μg/L	±	14
		μg/L	50 μg/L 50 μg/L		15
Mepanipyrim Metribuzin	1	μg/L	10	±	19
	5	μg/L	50 μg/L	±	
Myclobutanil*	1	μg/L	50 μg/L	±	14
Oxadiazon	1	μg/L	50 μg/L	±	14
Oxyfluorfen*	1	μg/L	50 μg/L	±	15
Parathion-methyl	1	μg/L	50 μg/L	±	16
Penconazole*	1	μg/L	50 μg/L	±	14
Phosmet	5	μg/L	50 μg/L	±	23
Phtalimide	20	μg/L	50 μg/L	±	17
Piperonyl butoxide	1	μg/L	50 μg/L	±	14
Pirimicarb	1	μg/L	50 μg/L	±	14
Pirimiphos-methyl	1	μg/L	50 μg/L	±	14
Procymidone*	1	μg/L	50 μg/L	±	13
Propargite	5	μg/L	50 μg/L	±	15
Propyzamide*	1	μg/L	50 μg/L	±	14
Proquinazid*	1	μg/L	50 μg/L	±	14
Prosulfocarb	1	μg/L	50 μg/L	±	14
Pyrethrines	50	μg/L	50 μg/L	±	22
Pyrimethanil*	1	μg/L	50 μg/L	±	14
Pyriofenone	1	μg/L	50 μg/L	±	14
Pyriproxyfene	1	μg/L	50 μg/L	±	14
Quinoxyfen*	1	μg/L	50 μg/L	±	14
Quizalofop-P-ethyl	5	μg/L	50 μg/L	±	20
S-Metolachlor	1	μg/L	50 μg/L	±	18
Spirodiclofen	5	μg/L	50 μg/L	±	16
Spiroxamine*	5	μg/L	50 μg/L	±	15
Tau Fluvalinate	5	μg/L	50 μg/L	±	17
Tebuconazole*	1	$\mu g/L$	50 μg/L	±	14
Tebufénozide	5	μg/L	50 μg/L	±	24
Tebufenpyrad*	1	μg/L	50 μg/L	±	14
Terbuthylazine	1	μg/L	50 μg/L	±	14
Tetraconazole*	1	μg/L	50 μg/L	±	15
Tetrahydrophtalimide	10	μg/L	50 μg/L	±	15
Tolclofos-methyl	1	μg/L	50 μg/L	±	14
Triadimefon	1	μg/L	50 μg/L	±	14
Triadimenol*	5	$\mu g/L$	50 μg/L	±	15
Trifloxystrobin*	1	$\mu g/L$	50 μg/L	±	14
Valifenalate	10	$\mu g/L$	50 μg/L	±	15
Vinclozolin*	1	$\mu g/L$	50 μg/L	±	13
Zoxamide	5	μg/L	50 μg/L	±	21

Residus phytosanitaires par $LC-MS^n$

C	Limite de	To a service	1.	
Composé	quantification	Incertitud	1e	
2,4-D	5 μg/L	50 μg/L	±	25
Aclonifen	5 μg/L	50 μg/L	±	21
Ametoctradin	1 μg/L	50 μg/L	±	21
Amisulbrom	5 μg/L	50 μg/L	±	16
Azoxystrobin	1 μg/L	50 μg/L	±	20
Benalaxyl*	1 μg/L	50 μg/L	±	15
Benthiavalicarb-isopropyl	1 μg/L	50 μg/L	±	19
Bitertanol	1 μg/L	50 μg/L	±	24
Boscalid	1 μg/L	50 μg/L	±	15
Bupirimate Buprofezin*	5 μg/L	50 μg/L 50 μg/L	±	19 14
Carbendazime+Benomyl*	1 μg/L	50 μg/L 50 μg/L	±	16
Carbendazime+Benomyi Carbetamide*	1 μg/L 5 μg/L	50 μg/L 50 μg/L	±	20
Carfentrazone-éthyl	5 μg/L 5 μg/L	50 μg/L 50 μg/L	±	21
Chlorantraniliprole	1 μg/L	50 μg/L 50 μg/L	±	21
Chlorpyrifos-éthyl		50 μg/L 50 μg/L		21
Chlorpyrifos-ethyl Chlorpyrifos-méthyl	5 μg/L 5 μg/L	50 μg/L 50 μg/L	±	20
Chiorpyrnos-metnyi Cléthodime	5 μg/L 5 μg/L	50 μg/L 50 μg/L	±	20
Clofentezine	5 μg/ L 5 μg/ L	50 μg/L 50 μg/L	±	23
Cvazofamide	1 μg/L	50 μg/L 50 μg/L	±	15
Cycloxydim	1 μg/L 5 μg/L	50 μg/L 50 μg/L	±	16
Cyflufenamid	1 μg/L	50 μg/L 50 μg/L	±	15
Cymoxanil*	1 μg/L 1 μg/L	50 μg/L 50 μg/L	±	21
Cymoxami	1 μg/L 1 μg/L	50 μg/L 50 μg/L	±	15
Cyprodinil*	1 μg/L 1 μg/L	50 μg/L 50 μg/L	±	21
Dichlofluanide	10 μg/L	50 μg/L	±	24
Diethofencarbe	5 μg/L	50 μg/L	±	16
Difenoconazole*	1 μg/L	50 μg/L	±	15
Dimethoate*	1 μg/L	50 μg/L	±	15
Dimetomorphe	1 μg/L	50 μg/L	±	20
Dithianon	50 μg/L	50 μg/L	±	63
Diuron*	1 μg/L	50 μg/L	±	15
Emamectine benzoate	1 μg/L	50 μg/L	±	24
Etoxazole*	1 μg/L	50 μg/L	±	16
Fenamidone*	1 μg/L	50 μg/L	±	15
Fenarimol*	5 μg/L	50 μg/L	±	15
Fenazaquin*	1 μg/L	50 μg/L	±	15
Fenbuconazole*	1 μg/L	50 μg/L	±	14
Fenhexamid	1 μg/L	50 μg/L	±	15
Fenoxaprop-ethyl	1 μg/L	50 μg/L	±	15
Fenpropidine	1 μg/L	50 μg/L	±	19
Fenpropimorphe*	1 μg/L	50 μg/L	±	15
Fenpyrazamine*	1 μg/L	50 μg/L	±	15
Fenpyroximat	5 μg/L	50 μg/L	±	20
Fipronil	10 μg/L	50 μg/L	±	29
Fluazifop-p-butyle	5 μg/L	50 μg/L	±	20
Fluazinam	5 μg/L	50 μg/L	±	17
Fludioxonil	10 μg/L	50 μg/L	±	26
Flufenoxuron	5 μg/L	50 μg/L	±	22
Fluopicolide	1 μg/L	50 μg/L	±	15
Fluopyram	1 μg/L	50 μg/L	±	15
Flurochloridone	1 μg/L	50 μg/L	±	20
Flusilazole*	1 μg/L	50 μg/L	±	15
Flutriafol*	1 μg/L	50 μg/L	±	15
Fluxapyroxad*	1 μg/L	50 μg/L	±	16
Hexaconazole	1 μg/L	50 μg/L	±	15
Hexythiazox*	1 μg/L	50 μg/L	±	15
Imazalil*	1 μg/L	50 μg/L	±	19

Imidacloprid	5 μg/L	50 μg/L	± 20
Indoxacarbe	1 μg/L	50 μg/L	± 21
Iprodione	5 μg/L	50 μg/L	± 16
Iprovalicarbe	1 μg/L	50 μg/L	± 20
Isofetamide	5 μg/L	50 μg/L	± 22
Isoxaben*	1 μg/L	50 μg/L	± 15
Kresoxim-méthyl	5 μg/L	50 μg/L	± 21
Lufenuron	1 μg/L	50 μg/L	± 17
Malathion*	1 μg/L	50 μg/L	± 18
Mandipropamid	5 μg/L	50 μg/L	± 20
Mepanipyrim*	1 μg/L	50 μg/L	± 16
Metalaxyl-M*	1 μg/L	50 μg/L	± 16
Methoxyfenozide	10 μg/L	50 μg/L	± 27
Metrafenone*	1 μg/L	50 μg/L	± 15
Metribuzin	5 μg/L	50 μg/L	± 23
Myclobutanil*	1 μg/L	50 μg/L	± 15
Napropamid	5 μg/L	50 μg/L	± 20
Oryzalin	10 μg/L	50 μg/L	± 30
Oxadiazon	5 μg/L	50 μg/L	± 16
Oxadixyl	5 μg/L	50 μg/L	± 16
Oxathiapiproline	5 μg/L	50 μg/L	± 22
Penconazole*	1 μg/L	50 μg/L	± 15
Pendimethaline*	1 μg/L	50 μg/L	± 16
Penoxsulam	1 μg/L	50 μg/L	± 21
Phosmet	5 μg/L	50 μg/L	± 16
Piperonyl butoxide	5 μg/L	50 μg/L 50 μg/L	± 24
Pirimicarb*	1 μg/L	50 μg/L 50 μg/L	± 14
Pirimiphos-méthyl*		50 μg/L 50 μg/L	± 14
Prochloraz	1 μg/L		
	1 μg/L	50 μg/L	± 15
Propargite	10 μg/L	50 μg/L	± 27
Propaquizafop	1 μg/L	50 μg/L	± 20
Propyzamide	5 μg/L	50 μg/L	± 15
Proquinazid*	1 μg/L	50 μg/L	± 20
Prosulfocarb*	1 μg/L	50 μg/L	± 15
Pyraclostrobine	1 μg/L	50 μg/L	± 16
Pyraflufen-éthyl	5 μg/L	50 μg/L	± 16
Pyridaben*	1 μg/L	50 μg/L	± 17
Pyrimethanil	1 μg/L	50 μg/L	± 15
Pyriofenone	1 μg/L	50 μg/L	± 15
Pyriproxyfene	1 μg/L	50 μg/L	± 14
Quinoxyfene	1 μg/L	50 μg/L	± 21
Quizalofop-p-ethyl	1 μg/L	50 μg/L	± 19
S-Metolachlor	1 μg/L	50 μg/L	± 20
Spinetoram	5 μg/L	50 μg/L	± 21
Spinosad	5 μg/L	50 μg/L	± 26
Spirodiclofen	5 μg/L	50 μg/L	± 25
Spiroxamine	1 μg/L	50 μg/L	± 20
Tebuconazole	1 μg/L	50 μg/L	± 15
Tebufénozide	1 μg/L	50 μg/L	± 35
Tebufenpyrad*	1 μg/L	50 μg/L	± 15
Teflubenzuron	5 μg/L	50 μg/L	± 21
Terbuthylazine	5 μg/L	50 μg/L	± 20
Tetraconazole*	1 μg/L	50 μg/L	± 15
Thiabendazole	1 μg/L	50 μg/L	± 21
Thiamethoxam	1 μg/L	50 μg/L	± 15
Thiophanate-méthyl	1 μg/L	50 μg/L	± 28
Triadimefon*	1 μg/L	50 μg/L	± 15
Triadimenol	1 μg/L	50 μg/L	± 21
Trifloxystrobin*	1 μg/L	50 μg/L 50 μg/L	± 15
Valifenalate	5 μg/L	50 μg/L 50 μg/L	± 20
Zoxamide	1 μg/L	50 μg/L 50 μg/L	± 15
Loxamide	ı μg/ L	50 μg/ L	± 1)

MENU FOSETYL / GLYPHOSATE PAR LC-MSⁿ

Composé	Limite de quantification	Incertitude	
Fosetyl-Al	0,01 mg/L	1 mg/L	± 0,44
Acide Phosphoreux	0,1 mg/L	1 mg/L	± 0,44
Glyphosate	0,05 mg/L	1 mg/L	± 0,33
N-Acetyl-AMPA	0,05 mg/L	1 mg/L	± 0,32
AMPA	0,1 mg/L	1 mg/L	± 0,57
Glufosinate	0,1 mg/L	1 mg/L	± 0,37
MPPA	0,05 mg/L	1 mg/L	± 0,35
N-Acetyl-Glufosinate	0,1 mg/L	1 mg/L	± 0,58
Ethephon	0,05 mg/L	1 mg/L	± 0,35
HEPA	0,1 mg/L	1 mg/L	± 0,34

Pour plus de renseignements, veuillez consulter le laboratoire.

DEFAUTS ET CONTAMINANTS DES VINS ET DES MOUTS

Phénols volatils

Caractéristique	Méthode	Limite de quantification	Incer	
Ethyl-4-phénol Ethyl-4-gaïacol	22.42	6 μg/L 3,2 μg/L	400 μg/L 80 μg/L	Max ± 68 Max ± 13
Vinyl4-phénol GC-MS Vinyl4-gaïacol	15 μg /L	1500 μg/L	± 322	
		15 μg /L	400 μg/L	± 82

Haloanisoles - Halophénols

Haloanisoles

Caractéristique	Méthode	Limite de quantification	Incertitude		
TCA		0.5/I	0,5 ng/L	± 0,2	
ICA	SPME GC:MS	TCA 0,5 n	0,5 ng/L	5 ng/L	± 0,9
TDA			1 /1	1 ng/L	± 0,4
IBA			I ng/L	5 ng/L	± 0,9
TeCA		1,5 ng/L	5 ng/L	± 1,0	
PCA		3 ng/L	10 ng/L	± 1,8	

Halophénols

Caractéristique	Méthode	Limite de quantification	Incert	titude
TCP		5 ng/L	100 ng/L	± 11
ТВР	Dérivatisation dans l'anhydre	10 ng/L	100 ng/L	± 17
TeCP	acétique puis SPME - GC-MS	5 ng/L	100 ng/L	± 16
PCP		5 ng/L	100 ng/L	± 12

Géosmine

Méthode	Limite de quantification	Incertitude	
GCMS	5 ng/L	20 ng/L ± 4,4	

Mycotoxines et amines biogènes

Ochratoxine A

Méthode	Limite de quantification		
HPLCFluo	0,1 μg/L	2 μg/L ± 0,36	

Histamine

Méthode	Limite de quantification	Incertitude
Test enzymatique	1,5 mg/L	± 20 %

Menu amines biogènes

Amines biogènes : Méthylamine, Ethylamine, Tyramine, Phényléthylamine, Putrescine, Isoamylamine, Cadavérine, Histamine.

Méthode	Limite de quantification	Incertitude
HPLC:DAD	0,5 mg/L	± 10%

Métaux lourds (liste non exhaustive)

Caractéristique	Méthode	Limite de quantification (équipement)	Incer	titude
Aluminium		31,25 μg/L	1000 μg/L	Max ± 230
Antimoine		2,5 μg/L	2,5 μg/L	Max ± 1,86
Arsenic		1,25 μg/L	15 μg/L	$Max \pm 3,47$
Cadmium		0,25 μg/L	0,25 μg/L	Max ± 0,18
Chrome		1,25 μg/L	$1,25 \mu\mathrm{g/L}$	Max ± 0,92
Cobalt		0,25 μg/L	0,25 μg/L	Max ± 0,17
Cuivre		0,0065 mg/L	1 mg/L	Max ± 0,16
Etain	ICP-MS	2 μg/L	2 μg/L	Max ± 1,55
Fer		0,0065 mg/L	5 mg/L	Max ± 0,65
Mercure		0,5 μg/L	0,5 μg/L	Max ± 0 ,49
Molybdene		0,625 μg/L	0,7 μg/L	Max ± 0,44
Nickel		0,625 μg/L	40 μg/L	Max ± 8,8
Plomb		0,25 μg/L	100 μg/L	Max ± 16,5
Sélenium		6,25 μg/L	6,25 μg/L	Max ± 2,38
Zinc		0,0625 mg/L	5 mg/L	Max ± 0.84

Les incertitudes peuvent varier en fonction de la préparation des échantillons, veuillez-vous rapprocher du laboratoire pour plus de précisions.

Autres contaminants

Benzaldéhyde et alcool benzylique

Méthode	Limite de quantification		itude
SPME GC:MS	0.5 mg/L	1,25 mg/L	± 0,48

Carbamate d'éthyle

•		
Méthode	Limite de	Incertitude

	quantification		
SPME GC-MS	5 μg/L	20 μg/L	± 5,67

Glycols

Caractéristique	Méthode	Limite de quantification	Incertitude
DEG		5 mg/L	± 17 %
MPG	LC-MSMS	10 mg/L	± 20 %

CONTAMINANTS ISSUS DES PLASTIQUES ET SOLVANTS ORGANIQUES

Phtalates

Caractéristique	Méthode	Limite de quantification	Incer	titude
DMP, DEP, DiBP, DBP, BBP, DCHP,		10 μg/L	300 μg/L	± 70
DEHP, DOP		10 μg/L	300 μg/L	± 100
DINP, DIDP		50 μg/L	1500 μg/L	± 550

Bisphénol A

Méthode	Limite de quantification	Incer	titude
Extraction liquide-liquide GC-MS	1 μg/L	10 μg/L	± 2

BTEX

Benzène, Ethylbenzène, Ethylbenzène, Naphtalène, Toluène, Chlorobenzène, Xylènes (o, m, p), Isopropylbenzène (Cumène), Triméthylbenzènes (1,3,5; 1,2,4; 1,2,3), Styrène.

Méthode	Limite de guantification	Incer	titude
SPME	1 μg/L	5 μg/L	± 1
GCMS	Xylènes (m, p) 2 μg/L	10 μg/L	± 2

Alkylphénols

Caractéristique	Méthode	Limite de quantification	Incertitude
2-tert-butylphenol			± 25 %
4-tert-butylphenol			± 20 %
4-methyl-2-tert-butylphenol 5-methyl-2-tert-butylphenol 6-methyl-2-tert-butylphenol 4,6-dimethyl-2-tertbutylphenol 2,4-di-tert-butylphenol 2,6-di-tert-butylphenol	GCMS	1 µg/L	± 25 %
			± 25 %
			± 25 %
			± 25 %
			± 25 %
			± 30 %

ANALYSE DU BOIS

Caractéristique	Méthode	Limite de quantification Pour 20 g de copeaux	Incertitude	
TCA, TBA		0,1 ng/g	0,5 ng/g	0,1 ng/g
TeCA, PCA		0,5 ng/g	2,5 ng/g	0,5 ng/g
TCP	GC-MS	0,8 ng/g	2,5 ng/g	0,8 ng/g
TBP, TeCP, PCP		1,5 ng/g	10 ng/g	3,0 ng/g
Solvants organiques		0,1 µg/g	1,0 μg/g	0,17 μg/g

	$0,25~\mu\mathrm{g/g}$	0,5 μg/g	0,2 μg/g
Lindane			

Pour les analyses réalisées sur bois œnologiques comme « Profil aromatique » ou autres contaminants « Haloanisoles, hydrocarbures, lindane, métaux lourds », les informations sont consultables dans les pages précédentes.

ANALYSES AGRONOMIQUES

Analyses de pétioles - sarments de vigne

Caractéristique	Méthode	Limite de quantification [*]	Incer	titude
Bore Calcium Cuivre Fer Potassium Magnésium Manganèse Sodium Phosphore Zinc	MP-AES	1 mg/kg m.s. 0,1 % m.s. 2 mg/kg m.s. 2 mg/kg m.s. 0,1 % m.s. 0,1 % m.s. 5 mg/kg m.s. 20 mg/kg m.s. 10 mg/kg m.s.	50 mg/Kg 3 mg/kg 100 mg/kg 200 mg/kg 2 mg/kg 1 mg/kg 800 mg/kg 800 mg/kg 0,5 mg/kg 100 mg/kg	± 10 ± 0,6 ± 18,2 ± 33 ± 0,58 ± 0,18 ± 163 ± 167 ± 0,09 ± 18,5

^{*} pour une prise d'essai de 0,25 g et un volume final de 50 mL

Analyses de sols : Cations extractibles

Caractéristique	Méthode	Limite de quantification (Incertitude à la LQ
Calcium		0,22 g/kg	± 0.129
Cuivre		1 mg/kg	± 0.62
Fer	MP-AES	6 mg/kg	± 3.6
Potassium	MPAES	40 mg/kg	± 26.8
Magnésium		15 mg/kg	± 9.3
Manganèse		15 mg/kg	± 9.13
Zinc		1,5 mg/kg	± 1.0

 $^{^{}st}$ pour une prise d'essai de 2,5 g et un volume final de 25 mL

Analyse de sols : métaux lourds

Caractéristique	Méthode	Limite de quantification *	Incertitude à la LQ
Arsenic		0,125 mg/kg	± 0,08
Cadmium		0,025 mg/kg	± 0,02
Chrome	ICP:MS	0,5 mg/kg	± 0,33
Cobalt		0,125 mg/kg	± 0,09
Cuivre		0,5 mg/kg	± 0,31
Mercure		0,03 mg/kg	± 0,005
Molybdene		0,0625 mg/kg	± 0,039
Nickel		0,25 mg/kg	± 0,15
Plomb		2,5 mg/kg	± 2,04
Zinc		6,25 mg/kg	± 3,73

Analyse de sols : Eléments totaux

Caractéristique	Méthode	Limite de quantification *	Incertitude
Carbone organique	Analyseur élémentaire	0.128 % MS	± 22%
Azote total	Analyseur elementaire	0.0365 % MS	± 17%
Calcaire Total		4.85 % MS	± 12%
Carbone organique		0.2 % MS	± 22%
Azote total	Proche IR	0.04 % MS	± 17%
Calcaire Total		5 % MS	± 12,2%

ANALYSES MICROBIOLOGIQUES

Par cytométrie de flux dans les vins

Caractéristique	Méthode	Limite de quantification pour les vins bruts de cuve (event/ml)	Limite de quantification pour les vins conditionnés (event/ml)	Incertitude
Saccharomyces sp. vivantes vitales		Max 4.10 ²	Max 10	Max 13 %
Saccharomyces sp. VMI		Max 4.10 ³	Max 20	Max 10 %
Saccharomyces sp. mortes		Max 10 ³	Max 10	Max 12 %
Brettanomyces sp. vivantes vitales		3.102	Max 10	Max 11 %
Brettanomyces sp. VMI	Cytométrie en flux	Max 1.3.10 ³	Max 10	Max 11 %
Brettanomyces sp. mortes		Max 1.6.10 ²	10	Max 14 %
Bactéries totales vivantes vitales		Max 10 ³	10	10 %
Bactéries totales VMI		Max 7.5.10 ³	Max 100	Max 10 %
Bactéries totales mortes		Max 7.10 ³	Max 30	Max 10 %

Les incertitudes sont exprimées sur le résultat en logarithme base 10. VMI : Viables Métaboliquement Inactifs (absence d'activité estérase).

Par cytométrie de flux dans les sols

Caractéristique	Méthode	Limite de quantification (event/g)	Incertitude
Micro-organismes totaux		6.52	16 %
Bactéries totales		6.44	16 %
Champignons totaux		5.66	22 %
Protistes totaux		4.83	29 %
Bactéries Gram +		5.27	23 %
Bactéries Gram -		6.37	16 %
Micro-organismes totaux vivants vitaux		5.85	21 %
Micro-organismes totaux VMI		6.36	21 %
Micro-organismes totaux morts	Cytométrie en flux	5.36	25 %
Bactéries VV		5.74	25 %
Bactéries VMI		6.28	17 %
Champignons VV		5.02	21 %
Champignons VMI		5.42	23 %
Bactéries Gram + VV		5.45	28 %
Bactéries Gram + VMI		5.57	34 %
Bactéries Gram - VV		5.53	26 %
Bactéries Gram - VMI		6.24	17 %

Les incertitudes sont exprimées sur le résultat en logarithme base 10. VMI : Viables Métaboliquement Inactifs (absence d'activité estérase).